№1800
0
\[\begin{array}{l} {\text{Докажите тождество:}} \hfill \\ \sin \left( {\frac{1}{2}\arcsin \frac{1}{3}} \right) = \frac{{\sqrt 3 \cdot \left( {2 - \sqrt 2 } \right)}}{6}. \hfill \\ \end{array}\]
Your solution

comments

593 days ago
см. также 2075

593 days ago
$%\sin \left( {\frac{1}{2}\arcsin \frac{3}{4}} \right) = \frac{{ - 1 + \sqrt 7 }}{4}$%

$%\sin \left( {\frac{3}{4}\arcsin \frac{3}{4}} \right) = \frac{{\sqrt {3 + \sqrt 7 } }}{4}$%

$%\sin \left( {\frac{3}{2}\arcsin \frac{3}{4}} \right) = \frac{{5 + \sqrt 7 }}{8}$%

$%\sin \left( {\frac{1}{4}\arcsin \frac{8}{9}} \right) = \frac{{\sqrt {15 - 3\sqrt {17} } }}{6}$%

$%\sin \left( {\frac{1}{4}\arcsin \frac{{12}}{{13}}} \right) = \frac{{\sqrt {338 - 78\sqrt {13} } }}{{26}}$%

593 days ago
$%\sin \left( {\frac{1}{4}\arcsin \frac{7}{{16}}} \right) = \frac{{\sqrt {5 - \sqrt {23} } }}{4}$%

$%\operatorname{tg} \left( {\frac{1}{4}\operatorname{arctg} \frac{3}{4}} \right) = - 3 + \sqrt {10} $%