№2049
\[\begin{array}{l}
{\text{Докажите тождества:}} \hfill \\
{\text{а) }}\prod\limits_{k = 1}^n {\sin \frac{{\pi k}}{{2n + 1}}} = \frac{{\sqrt {2n + 1} }}{{{2^n}}}; \hfill \\
{\text{б) }}\prod\limits_{k = 1}^{n - 1} {\sin \frac{{\pi k}}{{2n}}} = \frac{{\sqrt n }}{{{2^{n - 1}}}}; \hfill \\
{\text{в) }}\prod\limits_{k = 1}^n {\cos \frac{{\pi k}}{{2n + 1}}} = \frac{1}{{{2^n}}}; \hfill \\
{\text{г) }}\prod\limits_{k = 1}^{n - 1} {\cos \frac{{\pi k}}{{2n}}} = \frac{{\sqrt n }}{{{2^{n - 1}}}}. \hfill \\
\end{array}\]
Your solution
smart: 20
comments