tag:
число_\[\pi \]
§

Формула Виета для числа \[\pi \]

\[\frac{2}{\pi } = \frac{{\sqrt 2 }}{2} \cdot \frac{{\sqrt {2 + \sqrt 2 } }}{2} \cdot \frac{{\sqrt {2 + \sqrt {2 + \sqrt 2 } } }}{2}...\]
§

Формула Рамануджана для числа \[\pi \]

\[\frac{{2\sqrt 2 }}{{9801}}\sum\limits_{n = 0}^{ + \infty } {\frac{{\left( {4n} \right)!\left( {1103 + 26390n} \right)}}{{{{\left( {n!} \right)}^4}{{396}^{4n}}}}} = \frac{1}{\pi }.\]
§

Формула Валлиса

\[\frac{\pi }{2} = \prod\limits_{n = 1}^{ + \infty } {\frac{{4{n^2}}}{{4{n^2} - 1}}} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot ...\]
§

[Рамануджан]



\[1 + \frac{1}{{1 \cdot 3}} + \frac{1}{{1 \cdot 3 \cdot 5}} + \frac{1}{{1 \cdot 3 \cdot 5 \cdot 7}} + \frac{1}{{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}} + \cdot \cdot \cdot + \frac{1}{{1 + \frac{1}{{1 + \frac{2}{{1 + \frac{3}{{1 + \frac{4}{{1 + ...}}}}}}}}}} = \sqrt {\frac{{\pi \cdot e}}{2}} .\]



Примечание

\[\begin{array}{l} S = \sum\limits_{k = 1}^{ + \infty } {\frac{1}{{\left( {2k - 1} \right)!!}}} = \sqrt {\frac{{\pi \cdot e}}{2}} \cdot \left( {1 - \operatorname{erfc} \left( {\frac{{\sqrt 2 }}{2}} \right)} \right) \hfill \\ F = \frac{1}{{1 + \frac{1}{{1 + \frac{2}{{1 + \frac{3}{{1 + ...}}}}}}}} = \sqrt {\frac{{\pi \cdot e}}{2}} \cdot \operatorname{erfc} \left( {\frac{{\sqrt 2 }}{2}} \right) \hfill \\ \operatorname{erfc} x = 1 - \operatorname{erf} x \hfill \\ \operatorname{erf} x = \frac{2}{{\sqrt \pi }}\int\limits_0^x {{e^{ - {t^2}}}dt} \hfill \\ \end{array}\]
\[\frac{{{\pi ^2}}}{6} = 1 + \frac{1}{{1 + \frac{1}{{1 + \frac{1}{{\frac{1}{2} + \frac{1}{{\frac{1}{2} + \frac{1}{{\frac{1}{3} + \frac{1}{{\frac{1}{3} + ...}}}}}}}}}}}} = \left[ {1;1,1,\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{1}{3},\frac{1}{4},\frac{1}{4},\frac{1}{5},\frac{1}{5}...} \right]\]
\[\sum\limits_{k = 1}^{ + \infty } {\frac{1}{{{{\left( {k \cdot \left( {k + 1} \right)} \right)}^3}}}} = 10 - {\pi ^2}.\]
\[\frac{{2{\pi ^2}}}{3} = 7 - \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{\frac{2}{2} + \frac{1}{{\frac{2}{2} + \frac{1}{{\frac{2}{3} + \frac{1}{{\frac{2}{3} + ...}}}}}}}}}}}} = 7 - \left[ {0;2,2,\frac{2}{2},\frac{2}{2},\frac{2}{3},\frac{2}{3},\frac{2}{4},\frac{2}{4},\frac{2}{5},\frac{2}{5}...} \right].\]
\[\frac{\pi }{2} = 1/1 + \frac{{1/3 + \frac{{1/5 + \frac{{1/7 + ...}}{{6/5}}}}{{4/3}}}}{{2/1}}\]